

1 The impact of chlorine chemistry combined with

2 heterogeneous N₂O₅ reactions on air quality in China

3 Xiajie Yang^{1,2}, Qiaoqiao Wang^{1,2}, Nan Ma^{1,2}, Weiwei Hu³, Yang Gao⁴, Zhijiong

4 Huang^{1,2}, Junyu Zheng^{1,2}, Bin Yuan^{1,2}, Ning Yang^{1,2}, Jiangchuan Tao^{1,2}, Juan Hong^{1,2},

5 Yafang Cheng⁵, Hang Su⁵

6 ¹ Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China.

² Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental
 Quality, Guangzhou 511443, China.

9 ³Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

⁴ Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of

11 China, Qingdao 266100, China

12 ⁵ Max Planck Institute for Chemistry, Mainz 55128, Germany

13 Correspondence to: Qiaoqiao Wang (<u>qwang@jnu.edu.cn</u>)

14 Abstract: The heterogeneous reaction of N_2O_5 on Cl-containing aerosols ($N_2O_5 - ClNO_2$ chemistry) 15 plays a key role in chlorine activation, NOx recycling and consequently O3 formation. In this study, we 16 use the GEOS-Chem model with additional anthropogenic and biomass burning chlorine emissions combined with updated parameterizations for $N_2O_5 - CINO_2$ chemistry (i.e. the uptake coefficient of 17 18 $N_2O_5(\gamma_{N2O5})$ and the CINO₂ yield (φ_{CINO2})) to investigate the impacts of chlorine chemistry on air quality 19 in China, the role of N₂O₅ - ClNO₂ chemistry, as well as their sensitivities to chlorine emissions and 20 parameterizations for γ_{N205} and φ_{CIN02} . The model evaluation with multiple data sets observed across 21 China demonstrated significant improvement especially regarding the simulation of Cl⁻, N₂O₅ and ClNO₂ 22 with the updates in chlorine emissions and N₂O₅ - ClNO₂ chemistry. Total tropospheric chlorine 23 chemistry could increase annual mean MDA8 O_3 by up to 4.5 ppbv but decrease PM_{2.5} by up to 7.9 μ g m^{-3} in China, 83% and 90% of which could be attributed to the effect of $N_2O_5 - CINO_2$ chemistry. The 24 25 heterogeneous uptake of N₂O₅ on chloride-containing aerosol surfaces is an important loss pathway of N2O5 as well as a important source of O3, and hence is particularly useful in elucidating the commonly 26 27 seen ozone underestimations. The importance of chlorine chemistry largely depends on both chlorine 28 emissions and the parameterizations for N2O5 - ClNO2 chemistry. With the additional chlorine emissions 29 annual mean maximum daily 8-hour average (MDA8) O3 in China could be increased by up to 3.5 ppbv. 30 The corresponding effect on $PM_{2.5}$ concentrations varies largely with regions, with an increase of up to 4.5 µg m⁻³ in the North China Plain but a decrease of up to 3.7 µg m⁻³ in the Sichuan Basin. On the other 31 32 hand, even with the same chlorine emissions, the effects on MDA8 O3 and PM2.5 in China could differ 33 by 48% and 27%, respectively between different parameterizations.

34 1 Introduction

35	Chlorine (Cl) plays an important role in atmospheric chemistry in bo	th the stratosphere and the
36	troposphere, primarily via the reactions of Cl atom with various atmosp	pheric trace gases including
37	dimethyl sulfide, methane, and other volatile organic compounds (VOCs).	The chemistry of Cl is quite
38	similar with that of hydroxyl radicals (OH) while Cl atom reacts up to 2 or	lers of magnitude faster with
39	some VOCs than OH (Atkinson et al., 2006). Studies have shown that Cl	accounts for around 2.5% –
40	2.7% of the global $\rm CH_4$ oxidation in the troposphere, and the contribution values of the state of the	aries across regions, reaching
41	up to $10\%-15\%$ in Cape Verde and ${\sim}20\%$ in east China (Lawler et al., 20	11; Hossaini et al., 2016). Cl
42	atom, therefore, is regarded as a potentially important tropospheric oxidant.	
43	In general, Cl atom can be produced from the photo-dissociation and the ox	cidation of chlorinated
44	organic species (e.g. CH ₃ Cl, CH ₂ Cl ₂ and CHCl ₃) and inorganic chlorine spe	ecies (i.e. HCl and Cl ₂).
45	Recently, nitryl chloride (ClNO ₂), formed through the heterogeneous reaction	on between dinitrogen
46	pentoxide $(\mathrm{N_2O_5})$ and chloride-containing aerosols, is found to be another i	mportant source of
47	tropospheric Cl atoms in polluted regions (Liu et al., 2018; Haskins et al., 2	019; Choi et al., 2020). The
48	heterogeneous formation of $\ensuremath{\mathrm{CINO}}_2$ and the consequent photolysis can be defined as	escribed by reactions R1 –
49	R4 shown below (Finlayson-Pitts et al., 1989; Osthoff et al., 2008). The net	t reactions of R1 (N2O5
50	hydrolysis on none-chloride-containing aerosols) and R2 (uptake of $\mathrm{N_2O_5}$ o	on chloride-containing
51	aerosols) could be expressed as R3, in which the ClNO2 yield (i.e. φ_{ClNO2} , d	efined as the molar ratio of
52	produced ClNO ₂ to total reacted N_2O_5) represents the fraction of N_2O_5 react	ting via R2.
53	$N_2O_5(g) + H_2O(aq) \rightarrow 2 HNO_3(aq)$	(R1)
54	$N_2O_5(g) + HCl(aq) \rightarrow HNO_3(aq) + CINO_2(g)$	(R2)
55	$\mathrm{N_2O_5}\left(g\right) + (1{-}\varphi) \operatorname{H_2O}\left(aq\right) + \varphi \operatorname{HCl}\left(aq\right) \rightarrow$	
56	$(2-\varphi)$ HNO ₃ $(aq) + \varphi$ ClNO ₂ (g)	(R3)
57	$\operatorname{CINO}_2(g) + hv \rightarrow \operatorname{Cl}(g) + \operatorname{NO}_2(g)$	(R4)

 $58 \qquad \text{Estimates based on model simulations have suggested that $CINO_2$ provides a source of CI atoms totaling}$

59 0.66 Tg Cl a⁻¹, with the vast majority (95%) being in the Northern Hemisphere. The relative contribution

of CINO₂ to global tropospheric Cl atoms is 14% on average and exhibits clear regional variations
(Sherwen et al., 2016). For example, the study by Riedel et al. (2012) reported that the relative
contribution is approximately 45% in Los Angeles based on a simple box model combined with local
observations.

64 The heterogeneous formation of ClNO2 also serves as a reservoir for reactive nitrogen at night. The rapid 65 photolysis of ClNO2 at daytime (R4) not only releases highly reactive Cl atom but also recycles NO2 back 66 to the atmosphere, which as well significantly affect the daytime photochemistry (Thornton et al., 2010; 67 Riedel et al., 2014). It was suggested that the heterogeneous reaction between N₂O₅ and chloride-68 containing aerosol could increase monthly mean values of the maximum daily 8h average (MDA8) O₃ 69 concentrations by 1.0 - 8.0 ppbv in most Northern Hemisphere regions (Sarwar et al., 2014; Wang et al., 70 2019). The reaction also impacts secondary aerosol formation, mainly through the recycling of NO_x 71 (Staudt et al., 2019; Mitroo et al., 2019). For example, Sarwar et al. (2014) estimated that CINO2 72 production decreases nitrate by 3.3% in winter and 0.3% in summer averaged over the entire Northern 73 Hemisphere. The influence of the heterogeneous formation of ClNO2 in China is even larger due to the 74 polluted environment, leading to an increase in ozone concentrations by up to 7 ppby, and a decrease in 75 total nitrate by up to 2.35 μ g m⁻³ on monthly mean basis (Li et al., 2016; Sarwar et al., 2014)

76 There are two key parameters determining the heterogeneous uptake of N₂O₅, including the uptake 77 coefficient of N₂O₅ (γ_{N2O5}) and the ClNO₂ yield (φ_{ClNO2}). The most widely used parameterization for γ_{N2O5} 78 and φ_{CINO2} was proposed by Bertram and Thornton (2009), which is based on the laboratory studies with 79 considerations of temperature, relative humidity (RH), aerosol water content, concentrations of nitrate 80 and chloride, and specific surface area. However, recent field and model studies have shown that this 81 parameterization would overestimate both γ_{N205} and φ_{CIN02} , especially in regions with high Cl levels 82 (Mcduffie et al., 2018b; Mcduffie et al., 2018a; Xia et al., 2019; Chang et al., 2016; Hong et al., 2020; 83 Yu et al., 2020). The discrepancies could be partly attributed to the complexity of atmospheric aerosols 84 (e.g. mixing state and complex coating materials) in contrast to the simple proxies used in laboratory 85 studies (Yu et al., 2020). Several parameterizations updated from the one by Bertram and Thornton (2009) have been proposed by more recent studies based on field measurements and box model studies (Yu et 86 87 al., 2020; Mcduffie et al., 2018a; Mcduffie et al., 2018b; Xia et al., 2019). However, a full evaluation of

- $\label{eq:second} \textbf{88} \qquad \text{the representativeness of different parameterizations for the $N_2O_5 CINO_2$ chemistry and the associated}$
- 89 impacts on ambient air quality is not available yet.

90 In addition to the parameterization, the influence of the $N_2O_5 - CINO_2$ chemistry is also sensitive to 91 chlorine emissions. In early modelling studies, global tropospheric chlorine is mainly from sea salt 92 aerosols (SSA), and most of the chlorine over continental regions in North America and Europe is 93 dominated by the long-range transport of SSA (Wang et al., 2019; Sherwen et al., 2017). The importance 94 of anthropogenic chlorine emissions, which were ignored in most studies, has been raised recently based 95 on both field measurements and model simulations (Le Breton et al., 2018; Yang et al., 2018; Wang et 96 al., 2020; Hong et al., 2020). The study by Wang et al. (2020b) suggested that anthropogenic emissions 97 could dominate reactive chlorine in China, resulting in an increase in $PM_{2.5}$ and Ozone by up to 3.2 µg 98 m⁻³ and 1.9 ppbv on annual mean basis, respectively. The comprehensive effects of anthropogenic 99 chlorine on air quality as well as their sensitivities to different parameterizations for N₂O₅ - ClNO₂ 100 chemistry, however, has not been investigated in previous studies.

101 In this work, we use the GEOS-Chem model to investigate the impacts of chlorine chemistry including 102 the heterogeneous N₂O₅ - ClNO₂ chemistry on air quality in China. Multiple observational data sets, including N2O5, CINO2, O3, PM2.5 and its chemical species from different representative sites across 103 104 China, are used to assess the model performance. With comprehensive chlorine emissions as well as 105 appropriate parameterizations for $N_2O_5 - CINO_2$ chemistry, our objectives are: 1) to improve the model's 106 performance regarding the simulation of particulate chloride, CINO2, N2O5, PM2.5 and O3 concentrations; 107 and 2) to extend the investigation on the effects of chlorine chemistry on both $PM_{2.5}$ and ozone pollution 108 in China as well as their sensitivities to anthropogenic chlorine emissions and the parameterizations for 109 N₂O₅ - ClNO₂ chemistry.

110 2 Methodology

111 2.1 GEOS-Chem Model

112 The GEOS-Chem model (version 12.9.3, http://www.geos-chem.org) is driven by assimilated

113	meteorological fields GEOS-FP from the NASA Global Modeling and Assimilation Office (GMAO) at
114	NASA Goddard Space Flight Center. The simulation in this study was conducted in a nested-grid model
115	with a native horizontal resolution of $0.25^{\circ} \times 0.3125^{\circ}$ (latitude × longitude) and 47 vertical levels over
116	East Asia (70° – 140° E, 15° S – 55° N). The dynamical boundary conditions were from a global simulation
117	with a horizontal resolution of $2^{\circ} \times 2.5^{\circ}$. We initialized the model with a 1-month spin up followed by a
118	1-year simulation for 2018. The simulation included a detailed representation of coupled NO $_x$ – ozone –
119	VOCs - aerosol - halogen chemistry (Sherwen et al., 2016). Previous studies have demonstrated the
120	ability of GEOS-Chem to reasonably reproduce the magnitude and seasonal variation of surface ozone
121	and particulate matter over East Asia and China (Wang et al., 2013; Geng et al., 2015; Li et al., 2019).

122 2.1.1 Chlorine Chemistry

123 The GEOS-Chem model includes a comprehensive chlorine chemistry mechanism coupled with bromine and iodine chemistry. Full details could be found in the study of Wang et al. (2019b). Briefly, the model 124 includes 12 gas-phase inorganic chlorine species (Cl, Cl₂, Cl₂O₂, ClNO₂, ClNO₃, ClO, ClOO, OClO, 125 126 BrCl, ICl, HOCl, HCl), 3 gas-phase organic chlorine (CH₃Cl, CH₂Cl₂, CHCl₃), and aerosol Cl⁻ in two 127 size bins (fine mode with radius $\leq 0.5 \ \mu m$ and coarse mode with radius $> 0.5 \ \mu m$). The gas-aerosol equilibrium between HCl and Cl- is calculated with ISORROPIA II (Fountoukis and Nenes, 2007) as 128 129 part of the $H_2SO_4 - HCl - HNO_3 - NH_3 -$ non-volatile cations (NVCs) thermodynamic system, where 130 Na⁺ is used as a proxy for NVCs.

131The heterogeneous uptake of N2O5 on aerosol surfaces leading to the production of CINO2 and HNO3132has also been included in GEOS-Chem with parameterizations for γ_{N2O5} and φ_{CINO2} proposed by McDuffie133et al. (2018b; 2018a) by default (hereinafter referred to as McDuffie Parameterization). The γ_{N2O5} can be134described by Eq. 1:

135 $\frac{1}{\gamma_{N_2O_5}} = \frac{1}{\gamma_{coat}} + \frac{1}{\gamma_{coat}}$ Eq. 1

136Where γ_{core} represents the reactive uptake of inorganic aerosol core, and γ_{coat} represents the retardation of137the organic coating. More details of the parameterization can be referred to McDuffie et al. (2018b).

138 φ_{CINO2} is calculated following the study of Bertram and Thornton (2009), but is reduced by 75% based139on the observations conducted in eastern U.S. and offshore in spring 2015 (Lee et al., 2018). It could be

140 described by Eq. 2:

141 $\varphi_{\text{CINO}_2} = 0.25 \times \left(\frac{k_2[\text{H}_2\text{O}]}{k_3[\text{CI}^-]} + 1\right)^{-1}$ Eq. 2

142 Where [H₂O] and [Cl⁻] are the concentrations of aerosol liquid water content and aerosol chloride, 143 respectively, and $k_3/k_2 = 450$. The McDuffie parameterization can reproduce observed mean values of 144 γ_{N205} and φ_{ClN02} in eastern U.S. (Mcduffie et al., 2018b; Mcduffie et al., 2018a), but is still of great 145 uncertainty.

Recently, Yu et al. (2020) proposed new parameterizations of γ_{N2O5} and φ_{CINO2} based on the direct
measurements at two sites in northern and southern China representing different atmospheric conditions.
The parameterizations (hereinafter referred to as Yu Parameterization) are described by Eq. 3 – 4:

149
$$\gamma_{N_2O_5} = 6.12 \times 10^6 \times \frac{[H_2O]V}{c \cdot S_a} \left(1 - \frac{1}{\frac{1}{0.033 \times \frac{[H_2O]}{[NO_3]} + 3.4 \times \frac{[Cl^{-1}]}{[NO_3]} + 1}} \right) \quad \text{Eq. 3}$$

150 $\varphi_{\text{CINO}_2} = \left(1 + \frac{[\text{H}_2\text{O}]}{105[\text{CI}^-]}\right)^{-1}$ Eq. 4

Where *c* is an average gas-phase thermal velocity of N₂O₅; *V* and S_a are particle volume and surface area
densities, respectively; [H₂O], [Cl⁻] and [NO₃⁻] are the concentrations of aerosol liquid water content,
aerosol chloride and aerosol nitrate, respectively.

154 In this study, we updated the $N_2O_5 - CINO_2$ chemistry in GEOS-Chem with the Yu parameterization. 155 Additional simulation cases were also performed to evaluate the representativeness of both the Yu and 156 McDuffie Parameterizations regarding the simulation of N_2O_5 , CINO₂, O₃, PM_{2.5} and its chemical 157 speciation in China. Detailed description of the model setup for related cases is provided below in Section 158 2.1.3.

159 2.1.2 Emissions

The study uses the Hemispheric Transport of Air Pollution (HTAPv2, <u>http://www.htap.org/</u>) based on the emission of 2010 as a global anthropogenic inventory. This inventory is overwritten by a regional emission inventory MIX (with a horizontal resolution of $0.25^{\circ} \times 0.25^{\circ}$) over East Asia based on the emission in 2017, which is developed for the Model Inter-Comparison Study for Asia (MICS-Asia) and covers all major anthropogenic sources in 30 Asian countries and regions (Li et al., 2017). In addition,

165	anthropogenic emissions of black carbon (BC) and organic carbon (OC) in Guangdong province, China
166	(109° – 117° E, 20° – 26° N) are overwritten by a more recent high-resolution inventory (9 km \times 9 km)
167	described by Huang et al. (2021). Biomass burning emissions are from the Global Fire Emissions
168	Database (GFED4) (Van et al., 2010) with a 3-hour time resolution. And the biogenic emissions of VOCs
169	are calculated based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN2.1)
170	(Guenther et al., 2006).

171 Table 1 lists Cl emissions from all sources in the model. The global tropospheric chlorine by default in 172 the model is mainly from the mobilization of Cl⁻ from SSA distributed over two size bins (fine and coarse 173 modes) (Wang et al., 2019), which is computed online as the integrals of the size-dependent source 174 function depending on wind speeds and sea surface temperatures (Jaeglé et al., 2011). During the 175 simulation year of 2018, SSA contributes 6.5×10^4 Gg Cl⁻, most of which however are distributed over 176 the ocean due to its relatively short lifetime (~1.5 days) (Choi et al., 2020). The release of atomic Cl 177 from organic chlorine (CH₃Cl, CH₂Cl₂ and CHCl₃) via the oxidation by OH and Cl is also included in 178 the model by default. These organic chlorine gases are mainly of biogenic marine origin (Simmonds et 179 al., 2006), with a mean tropospheric lifetime longer than 250 days (Wang et al., 2020), and are simulated 180 in the model by imposing fixed surface concentrations as described by Schmidt et al. (2016). Total 181 emissions of Cl atom from CH₃Cl, CH₂Cl₂, and CHCl₃ are estimated to be 3.8, 2.4, and 0.70 Gg Cl a⁻¹, 182 respectively.

183 Considering the importance of anthropogenic chlorine in China, we have further updated chlorine 184 inventories in the model to account for anthropogenic HCl, Cl₂ and fine particulate Cl⁻, as well as biomass 185 burning HCl and Cl⁻ emissions (also shown in Table 1). For fine particulate Cl⁻ from both anthropogenic 186 and biomass burning, the emissions are estimated based on PM2.5 emissions from MIX and GFED4 187 inventories combined with the emission ratios of fine particulate Cl⁻ versus PM_{2.5} for different emission 188 sectors adopted from the study of Fu et al. (2018). Estimated Cl⁻ emissions from anthropogenic and 189 biomass burning are 379 and 120 Gg, respectively, comparable to the results of 486 Gg in total for the 190 year of 2014 by Fu et al. (2018). The anthropogenic emissions of HCl and Cl₂ are from ACEIC 191 (Anthropogenic Chlorine Emissions Inventory for China) (Liu et al., 2018) and are estimated to be 218 192 and 8.9 Gg Cl in China, respectively. For HCl from biomass burning, the emission factors from Lobert

- et al. (1999) are used for different types of biomass provided in GFED4, and a total emission of 30 Gg
 Cl is obtained in China in 2018. Total implemented chlorine emission for the simulation year of 2018 is
 756 Gg Cl.
- 196 Figure 1 shows the distribution of Cl emissions from the sources mentioned above. Anthropogenic and 197 biomass burning emissions of HCl are concentrated in the Northeast Plain (NP), North China Plain (NCP), 198 Yangtze River Delta (YRD), and Sichuan Basin (SCB), and could be up to 320 kg Cl km⁻² a⁻¹ in the SCB. 199 Emissions of HCl are low in South China, mainly due to the low chlorine content of coal in these regions 200 (Hong et al., 2020). The relative contribution of biomass burning to total HCl emissions in China is 14% 201 on average, but could become dominant in the NP due to the discrepancies in the spatial distributions of 202 anthropogenic and biomass burning emissions. The anthropogenic Cl₂ emissions have a similar spatial 203 distribution to that of HCl, but are one order of magnitude lower than HCl emissions. The distribution of 204 non-sea salt Cl⁻ emissions is also similar to that of HCl and Cl₂, except that non-sea salt Cl⁻ emissions 205 are also high in Central China. In contrast, emissions of sea salt Cl (Fig. S1) are mainly distributed over 206 the ocean, implying limited influences over inland due to rapid deposition during transport. The spatial 207 distributions of different organic chlorine sources are similar, with maximums (~ $0.5 \text{ kg Cl km}^{-2} \text{ a}^{-1}$) in 208 coastal regions (Fig. S1).

209 2.1.3 Model setup for different simulation cases

210 In this study, we conducted a series of simulation cases to investigate the effects of chlorine chemistry 211 on air quality in China, the role of N₂O₅ - ClNO₂ chemistry, and the associated sensitivities to chlorine emissions as well as the parameterizations for $N_2O_5 - CINO_2$ chemistry. Detailed model setup for those 212 213 cases is listed in Table 2. The Base case is the one with all updates in this study, including additional 214 chlorine sources from anthropogenic and biomass burning emissions as well as improved N2O5 - ClNO2 215 chemistry represented by the Yu parameterization. The NoEm case is conducted with a similar setup as the Base case but only includes chlorine emissions from SSA and organic chlorine sources so as to 216 217 evaluate the model improvement originated from the updated chlorine emissions through the comparison 218 with the Base case. The McDuffie case is also performed using the McDuffie instead of Yu 219 parameterization for γ_{N2O5} and φ_{CINO2} while keeping others the same as the Base case so as to evaluate the 220 discrepancies originated from different parameterizations for the N2O5 - ClNO2 chemistry.

In addition, the NoHet case sets φ_{CINO2} to zero (i.e. $[CI^-] = 0$ in Eq. 3 and 4) but keeps others the same as the Base case so as to evaluate the importance of the of N₂O₅ – CINO₂ chemistry through the comparison with the Base case. Similarly, combined with three more sensitivity cases (NoChem, NoEmHet and NoAll, see details in Table 2), the study provides an overall evaluation of the importance of tropospheric chlorine chemistry as well as its sensitivities to chlorine emissions and the parameterizations for N₂O₅ – CINO₂ chemistry in the model.

227 2.2 Observations

228 Multiple observed data sets were applied in this study to evaluate the performance of GEOS-Chem 229 simulation, including the concentrations of chemical species of PM2.5 from three representative sites, located in south (Guangzhou, 23.14° N, 113.36° E), east (Dongying, 37.82° N, 119.05° E) and north 230 (Gucheng, 37.36° N, 115.96° E) China, respectively (Fig. S2). Concentrations of SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻ 231 and organic matter (OM) in PM2.5 were measured by High Resolution Time-of-Flight Aerosol Mass 232 233 Spectrometer (HR-ToF-AMS; Aerodyne Research Inc., USA, Decarlo et al. (2006)) from October 2 to 234 November 18, 2018 (with a time resolution of 1 minute) at Guangzhou site (Chen et al., 2021b), and 235 from March 18 to April 21, 2018 (with a 1-minute time resolution) at Dongying site. Concentrations of 236 these species were measured by an Aerodyne Quadruple Aerosol Chemical Speciation Monitor (ACSM; 237 Aerodyne Research Inc., USA, Ng et al. (2011)) from November 11 to December 18 in 2018, with a time 238 resolution of 2 minutes at Gucheng site (Li et al., 2021).

239 Concentrations of N₂O₅ and ClNO₂ (with a time resolution of 1 minute) were also measured at Guangzhou site by a Chemical Ionization Mass Spectrometer (CIMS, THS Instruments Inc., Atlanta, 240 241 (Kercher et al., 2009)) from September 25 to November 12 in 2018 (Ye et al., 2021). To have a thorough 242 evaluation of the representativeness of different parameterizations for γ_{N205} and φ_{CIN02} , observations of 243 ClNO2 and N2O5 at six more sites across China from previous studies (see Table S1 and Fig. S2) are also used in this study. It should be noted that model results sampled at those sites for comparison were 244 simulated in the same months but different years while ignoring the uncertainties associated with the 245 246 interannual variability.

247 In addition, we also use observed hourly data of O₃ and PM_{2.5} published by the China National

248 Environmental Monitoring Center (CNEMC, http://www.cnemc.cn/sssj/, last access on June 20, 2021)

- 249 to evaluate the model's overall performance in China. The network was launched in 2013 as part of the
- 250 Clean Air Action Plan, and includes ~1500 stations located in 370 cities by 2018 (Fig. S2).

251 3 Results and discussion

252 3.1 Improved model performance with updated chlorine emissions and N₂O₅ - ClNO₂ chemistry

Figure 2 shows time series of observed and simulated Cl⁻ concentrations at the Guangzhou, Dongying, and Gucheng sites. The observations show the lowest Cl⁻ concentrations at the Guangzhou site ($0.55 \pm 0.52 \ \mu g \ m^{-3}$), although the site is the closest to the ocean among all three sites, while the highest concentrations ($4.7 \pm 3.3 \ \mu g \ m^{-3}$) are observed at the Gucheng site, away from the sea. Moderate concentrations of Cl⁻ is observed at the Dongying site, around $1.1 \pm 0.82 \ \mu g \ m^{-3}$. The relatively higher concentrations observed inland again suggest the dominance of non-sea salt Cl⁻ in China, as mentioned before in the Introduction.

260 The comparison between observations and simulated results from the NoEm case shows a serious underestimate of Cl⁻ concentrations, with normalized mean bias (NMB) ranging from -96% to -79%, 261 262 suggesting the missing of significant chlorine sources in addition to sea salt chlorine. In contrast, the 263 Base case with updated chlorine emissions exhibits much higher Cl⁻ concentrations and can successfully 264 reproduce observations, with average of 0.77 ± 0.54 , 0.71 ± 0.52 , and $4.5 \pm 2.4 \ \mu g \ m^{-3}$ at the Guangzhou, 265 Dongying, and Gucheng sites, respectively. The increase in Cl concentrations in the Base case compared 266 with the NoEm case is the most significant at the Gucheng site, by a factor of 24 (from 0.19 to 4.5 µg m⁻ 267 3 on average). The NMB in the Base case therefore has decreased to -36% - 39%. The slight 268 underestimates at the Dongying site in the Base case could be to some extent explained by the bias in 269 GFED4, which underestimates emissions from agricultural fires due to their small size and short duration 270 as suggested by the study of Zhang et al. (2020). In spite of that, the model with the Base case well 271 reproduces the overall distribution of the observed particulate chloride concentrations in China. The 272 correlation coefficients (r) between observed and model results at the three sites also increase from -0.05 273 -0.61 in the NoEm case to 0.40 - 0.71 in the Base case. The significant improvement in the model

274 performance again suggests sources other than SSA play a key role in Cl⁻ concentrations in China.

- 275 The comparison between observed and simulated N₂O₅ (Fig. 3a) shows that NMB for the NoEm case are 276 -58%, 150%, 108% and 25% at the Guangzhou, Wangdu, Taizhou and Mount Tai sites, respectively. In 277 contrast, the corresponding NMB for the Base case are much smaller, -57%, 48%, 91% and 18%, 278 respectively. The improvement in the Base case is apparent at most sites, implying that additional 279 chlorine emissions combined with the updated $N_2O_5 - CINO_2$ chemistry with Yu parameterization could 280 effectively increase the uptake coefficient of N₂O₅. Little improvement is found at the Guangzhou site (-281 58% in the NoEm case vs. -57% in the Base case). Previous studies also found an underestimation of 282 N₂O₅ in the Pearl River Delta (PRD), which could be partly explained by the underestimation of the 283 sources (e.g NO₂) and/or the overestimation of the sink of N₂O₅ there (Dai et al., 2020; Li et al., 2016).
- 284 The N₂O₅ results from the McDuffie case, which uses the McDuffie parameterization (a default setting 285 in GEOS-Chem, see Section 2.1.1 and 2.1.3) instead of Yu parameterization are also shown in Fig. 3a. 286 The NMB for the McDuffie case are -53%, 154%, 143% and 37% at the Guangzhou, Wangdu, Taizhou 287 and Mount Tai sites, respectively. The comparison indicates that Yu parameterization can reproduce 288 observed N2O5 better in China in general, while McDuffie parameterization tends to overestimate N2O5 289 concentrations, which could be attributed to the suppression from the organic coatings leading to a much 290 lower γ_{N205} (see Eq. 1 for McDuffie parameterization). Similarly, Morgan et al. (2015) found significant 291 underestimates in γ_{N205} when the effect of organic coatings is considered. The effect of organic coatings 292 strongly depends on organic composition, particle phase state, and the environmental factors (e.g. RH 293 and temperature), and thus remains poorly quantified (Mcduffie et al., 2018b; Morgan et al., 2015). As 294 suggested by the study of Yu et al. (2020), the bias in γ_{N205} in McDuffie parameterization could be to 295 some extent explained by the fact that the parameterization does not differentiate between water-soluble 296 and water-insoluble organic fractions and simplifies the morphology and phase state, resulting in an 297 underestimation of the solubility and the diffusivity of N2O5 in organic matter.
- For the comparison of ClNO₂ (Fig. 3b), we use the mean nighttime (excluding the data at local time of
 10:00 16:00) maximum mixing ratio, as suggested by Wang et al. (2019b and 2020b). Observed ClNO₂
 is high in Guangzhou (1121 pptv) and Wangdu (~ 990 pptv), followed by Changping (~ 500 pptv) and
 Beijing (~ 430 pptv). The lowest concentrations are obtained at Mount Tai and Mount TaiMoShan (~ 150

302	and 120 pptv, respectively) due to relatively clean condition at high altitude. The comparison between
303	observed and simulated $CINO_2$ at different sites also suggests a better model performance for the Base
304	case with NMB in the range of -28% – 22%, compared with the NMB of -77% – -31% and -59% – -36%
305	for the NoEm and McDuffie cases, respectively. The large difference between the NoEm and Base cases
306	again emphasizes the important role of non-sea salt chlorine in the formation of ClNO2. The
307	underestimates in McDuffie parameterization on the other hand may suggest that the scaling factor of
308	0.25 applied to φ_{CINO2} in Eq. 2 is not appropriate for the atmospheric condition in China. A scaling factor
309	of 0.5 instead of 0.25 may fit better with observations used in the study. More field measurements and
310	model evaluations are required to come up with a more precise scaling factor better representing φ_{CINO2}
311	in China. Overall, with updated chlorine emissions and Yu parameterization for γ_{N205} and φ_{CIN02} , the Base
312	case agrees better with both the magnitude and the spatial variation of observed $\mathrm{N}_2\mathrm{O}_5$ and ClNO_2 in
313	China.

314 To further elucidate how the model behaves in reproducing the spatial distribution of ozone and PM_{2.5} 315 through the incorporation of the additional chlorine emissions and updated N2O5 - ClNO2 chemistry with 316 Yu parameterization, simulated MDA8 O3 and PM2.5 from different cases were compared with 317 observations across China. Figure 4 shows observed annual mean MDA8 O3 and PM2.5 in 2018 in China 318 from CNEMC compared with the model results from the Base case. The observed annual mean MDA8 O3 and PM2.5 are 49 ppbv and 39 µg m-3 respectively in 2018 in China. Model results from the Base case 319 320 could generally reproduce observed spatial and seasonal variations of annual mean MDA8 O3 and PM2.5 concentrations, with NMB of -26% and 3.6% and r of 0.83 and 0.81 respectively. 321

322 Table 3 also summarized the model performance on both annual and seasonal scales regarding the 323 simulation of O3 and PM2.5 from different cases. For the comparison with observed MDA8 O3, although 324 different simulation cases show a similar range of r, the Base case tends to have a slightly smaller bias 325 in general, with NMB of -26% on annual average (-49% - -5.5% on seasonal mean) vs. -28% (-54% - -326 5.9%) in the NoEm and -27% (-53% - -5.2%) in the McDuffie case. For the comparison with observed 327 $PM_{2.5}$, the NMB bias from the Base case is 3.6% on annual average (-6.3% – 28% on seasonal mean). Compared with the NoEm case, there is some improvement in summer (5.0% vs. 3.9%) and winter (-328 7.9% vs. -4.3%) but slightly larger bias in autumn (26% vs. 28%). The McDuffie case on the other hand 329

- produces slightly higher PM_{2.5} concentrations, with NMB of 5.6%. Regarding the simulation of
 particulate chemical species (Table S2), although the model performance varies with sites and species,
 the Base case demonstrates better agreement with observations compared with the NoEm and McDuffie
 cases in general.
- On the whole, the model performance is better with the additional anthropogenic and biomass burning
 chlorine emissions combined with updated N₂O₅ ClNO₂ chemistry represented by Yu parameterization.
 Therefore, the following investigation of the impacts of chlorine chemistry on air quality in China as
 well as their sensitivities to chlorine emissions and parameterizations for N₂O₅ ClNO₂ chemistry is
 mainly based on the Base case.

339 3.2 Impacts of tropospheric chlorine chemistry on air quality and the role of N₂O₅ - ClNO₂ 340 chemistry

341 To comprehensively quantify the importance of chlorine chemistry, we conducted a sensitivity case in 342 which all related tropospheric chlorine chemistry was turned off (NoChem, also listed in Table 2). The 343 differences between the Base and NoChem cases (Fig. 5 and Fig. S3) could thus represent the impact of 344 the chlorine chemistry. The comparison shows that chlorine chemistry could increase annual mean 345 nighttime max CINO2 surface concentrations by 243 pptv averaged in China (up to 1548 pptv in the 346 SCB). The increase in annual mean Cl atoms is 1.7×10^3 molec cm⁻³ averaged in Chian (up to 7×10^3 347 molec cm⁻³ in coastal regions), which further lead to an increase in surface annual mean MDA8 O₃ and OH by 1.1 ppbv and 3.8×10^4 molec cm⁻³ averaged in China (up to 4.5 ppbv and 1.2×10^5 molec cm⁻³ in 348 349 the SCB) respectively through VOCs oxidation. In contrast, annual mean PM2.5 surface concentrations 350 are decreased by 0.91 µg m⁻³ averaged in China (up to 7.9 µg m⁻³ in the SCB), mainly due to the decrease of NO₃⁻ and NH₄⁺ (up to 6.4 μ g m⁻³ and 1.9 μ g m⁻³ respectively), although SO₄²⁻ concentrations are 351 352 increased slightly by up to 1.2 µg m⁻³ in the SCB (Fig. S3).

Previous studies suggested that tropospheric chlorine drives a global decrease of O_3 by catalytic production of bromine and iodine radicals from hypohalous acids (HOX, where X = Br and I) (Schmidt et al., 2016; Wang et al., 2019). On the contrary, $N_2O_5 - CINO_2$ chemistry can enhance O_3 through the production of Cl atoms and the recycling of NO_x . Therefore, we further investigate the role that $N_2O_5 -$

- 357 ClNO₂ chemistry plays in tropospheric chlorine chemistry through the comparison between the Base and 358 NoHet (Fig. 6 and Fig. S4). The comparison illustrates that the $N_2O_5 - CINO_2$ chemistry could result in a significant production of ClNO2, reaching 600 - 1400 pptv for annual mean nighttime max surface 359 360 concentrations in the NCP, and up to 1546 pptv in the SCB. The change in the surface concentrations of Cl atoms (an annual mean increase of $1 - 4 \times 10^3$ molec cm⁻³ in central and eastern China) is mainly due 361 362 to the photolysis of CINO2 and accounts for 74% of total change in annual mean Cl atoms due to all 363 tropospheric chlorine chemistry in China, which are consistent with the results from the previous study by Liu et al. (2017). 364
- 365 Consequently, the annual mean MDA8 O₃ surface concentrations are increased by 1.5 - 3 ppbv in central and eastern China and by up to 3.8 ppbv in the SCB, accounting for 83% of total change in annual mean 366 367 MDA8 O₃ due to all tropospheric chlorine chemistry in China. It is interesting to note that while MDA8 368 O₃ surface concentrations show maxima in summer and minima in winter in general, the influence of 369 $N_2O_5 - CINO_2$ chemistry on O_3 concentrations exhibits a different seasonality. The increase in seasonal 370 mean MDA8 O3 concentrations is the largest in winter (by up to 6.5 ppbv in the SCB), but is less than 371 1.5 ppbv in summer. This is because of more accumulation of N₂O₅ and ClNO₂ in dark conditions in long 372 winter nights (Sarwar et al., 2014).

373 There also exhibits an obvious decrease in the annual mean surface concentrations of PM2.5 attributed to 374 the N₂O₅ – ClNO₂ chemistry, ranging from 1.5 to 4.5 μ g m⁻³ in central and eastern China (accounting for 375 90% of total change in annual mean PM2.5 due to all tropospheric chlorine chemistry in China). The 376 decrease is more significant in autumn and winter in China, with a range of $3.5 - 5.5 \,\mu g \, m^{-3}$ in central and eastern China, and being up to 11 µg m⁻³ in the SCB. In contrast, the decrease in PM_{2.5} is less than 2 377 378 μ g m⁻³ in summer in China. The change in PM_{2.5} is mainly due to the decrease in NO₃⁻ (up to 6.2 μ g m⁻³ 379 in the SCB on annual average). In addition, NH_4^+ is also decreased by up to 1.8 µg m⁻³ in the SCB on 380 annual average, following the pattern of ΔNO_3^- . This is because NH₃ is in excess in most regions in China 381 (Xu et al., 2019) and the formation of CINO₂ via R2 could hinder the formation of HNO₃ and shift the 382 partitioning between NH3 and NH4+ towards NH3. Unlike the change in NO3 and NH4+, the N2O5-CINO2 383 chemistry increases surface SO_4^{2-} concentration slightly, which could be explained by the enhancements 384 of atmospheric oxidation associated with the increase in Cl atoms, OH and O₃, facilitating the formation

- 385 of secondary aerosols (Sarwar et al., 2014).
- 386 On the other hand, the effect of tropospheric chlorine chemistry without the $N_2O_5 CINO_2$ chemistry is 387 much smaller (Fig. S5), leading to an increase of up to 0.7 ppbv in inland China and a decrease of 0.3 – 388 0.5 ppbv in coastal regions for annual mean MDA8 O₃ concentrations. The increase is probably 389 associated with Cl atoms from photolysis of gas-phase chlorine, especially non-sea salt Cl₂ in inland 390 China, while the decrease at coastal regions is mainly due to catalytic production of bromine and iodine 391 radicals originated from sea-salt aerosols. The comparison demonstrates the dominance of $N_2O_5 - CINO_2$ 392 chemistry in total tropospheric chlorine chemistry in China.

393 3.3 The effect of N₂O₅ – ClNO₂ chemistry in response to chlorine emissions

394 Since both γ_{N2O5} and φ_{CINO2} in the Yu parameterization are highly dependent on [Cl⁻], the effect of N_{2O5} 395 - ClNO₂ chemistry on air quality is thus sensitive to chlorine emissions. Figure 7 shows the effects of 396 additional chlorine emissions from anthropogenic and biomass burring sources on annual mean surface 397 concentrations of different species (Cl⁻, Cl atom, OH, MDA8 O₃, PM_{2.5} and NO₃⁻) in China, calculated 398 as the differences between the Base and the NoEm case. With the implementation of the additional 399 chlorine emissions, the particulate Cl⁻ concentration increased significantly in inland China, with the 400 largest increase in the SCB (4.5 µg m⁻³) and little change in west China. The increase is in the range of 401 $1.5 - 3.5 \ \mu g \ m^{-3}$ in the NCP and $< 0.5 \ \mu g \ m^{-3}$ in South China. The spatial distribution of Δ Cl atoms is 402 also consistent with that of the additional chlorine emissions and ΔCl^{-} , showing the largest increment in 403 the SCB (about $4.5 - 5 \times 10^3$ molec cm⁻³). There is also a moderate increase in Cl atoms in the NP and NCP, with a range of $1.5 - 4 \times 10^3$ molec cm⁻³. Only a minor increase of Cl atoms is found in South China 404 $(< 1 \times 10^3 \text{ molec cm}^{-3}).$ 405

406 The reactions of VOCs with Cl atoms lead to a further increase in OH (an annual mean increase of 2-9407 × 10⁴ molec cm⁻³ in central and eastern China) and O₃ (Wang et al., 2016; Sarwar et al., 2014). The 408 increase in O₃ could also be due to the recycling of NO_x back to the atmosphere associated with the 409 photolysis of ClNO₂ (R4). The increase in MDA8 O₃ surface concentrations ranges from 0.5 to 3 ppbv 410 in central and eastern China, and reaches up to 3.5 ppbv in the SCB on annual average. The impacts of 411 chlorine sources on O₃ formation also vary with seasons. Although O₃ pollution is generally severe in

- 412 summer, the change in MDA8 O₃ due to chlorine sources is relatively minor, with maxima of 0.7 ppbv
- 413 in the SCB and < 0.5 ppbv in most other regions averaged in summer. In contrast, the increase is most
- 414 obvious in winter, with maxima of 5.2 ppbv in the SCB on seasonal average.

415 The effects of the additional chlorine emissions on surface PM2.5 concentrations is complicated. The NCP 416 shows the largest increase (3 - 4.5 µg m⁻³ on annual average), mainly due to the increase in Cl⁻, which 417 could also promote $N_2O_5 - CINO_2$ chemistry and lead to more NO_3^- production (Chen et al., 2021a). In 418 contrast, the SCB exhibits both an increase (by up to $4.2 \,\mu g \, m^{-3}$) and a decease (by up to $3.7 \,\mu g \, m^{-3}$). The 419 decrease of PM_{2.5} in the SCB is mainly due to the large decrease of NO₃⁻ there. In the SCB, nitrate 420 formation is dominated by the heterogeneous hydrolysis of N₂O₅ (Tian et al., 2019) while the additional 421 Cl⁻ could hinder the path of N₂O₅ hydrolysis due to competition with the path of ClNO₂ formation. 422 Consequently, the additional chlorine emissions result in a decrease of NO₃⁻ up to 5.6 μ g m⁻³ in SCB on 423 annual average.

424 In addition, NH₄⁺ concentrations could also be affected through the reaction of R5:

425 $\operatorname{HCl}(g) + \operatorname{NH}_3(g) \rightarrow \operatorname{NH}_4^+ + \operatorname{Cl}^-$ (R5)

426 In the NP and NCP where anthropogenic and biomass burning emissions of HCl are high, the annual mean NH_4^+ surface concentrations are increased by $0.5 - 1.5 \ \mu g \ m^{-3}$ (Fig. S6). NH_4^+ concentrations are 427 428 also affected by the gas-particle partitioning equilibrium, and decease as the pH value gets higher (or 429 increase with H^+ concentrations). Therefore, the competition between the $N_2O_5 - CINO_2$ chemistry and 430 N_2O_5 hydrolysis could also affect the formation of NH_4^+ . In other words, increased Cl^- concentrations 431 could results in less H^+ and thus less NH_4^+ . Consequently, there also exits some decrease in NH_4^+ 432 concentrations in the SCB associated with the large decrease in NO3- concentrations. In contrast, little 433 change is found for surface SO42- concentrations, less than 0.5 µg m-3 in most regions of China (Fig. S6).

It is worth mentioning that the effects of the additional chlorine emissions work mainly through the N₂O₅ - ClNO₂ chemistry. Without this heterogeneous chemistry, the increase of chlorine emissions shows only a minor change in Cl atoms (< 10^3 molec cm⁻³ in China, estimated as the difference between the NoHet and NoEmHet cases in Fig. S7). The impact of chlorine emissions on O₃ concentrations also weakens when the N₂O₅ - ClNO₂ chemistry is turned off, with an increase of 0.5 - 1 ppbv in MDA8 O₃ on annual

439 average (vs. 0.5 - 3 ppbv mentioned above).

440	On the other hand, the impacts of N_2O_5 – CINO ₂ chemistry on air quality in inland China would be
441	seriously underestimated if the additional anthropogenic and biomass burning chlorine sources are
442	ignored. If only seas salt chlorine emission is included in the simulation, the increase of \mbox{ClNO}_2 surface
443	concentrations resulted from N_2O_5 – $ClNO_2$ chemistry only occurs in coastal regions due to the
444	heterogeneous uptake of $\mathrm{N_2O_5}$ on sea salt chloride aerosols (by up to 260 pptv on annual average,
445	indicated by the difference between the NoEm and NoEmHet cases, Fig. S8). Consequently, the increase
446	in Cl atoms and MDA8 O_3 surface concentrations is found mainly in coastal regions. For instance, annual
447	mean MDA8 O_3 concentrations are increased by up to 2 ppbv in coastal regions, but by less than 0.5
448	ppbv in inland China. In other words, the dominance of $N_2O_5-ClNO_2$ chemistry in the impact of chlorine
449	chemistry on air quality in China is to large extent driven by the additional chlorine emissions.

450 3.4 The effect of N₂O₅ - CINO₂ chemistry in response to parameterizations for y_{N2O5} and φ_{CINO2}

451 It should be noted that the impact of $N_2O_5 - CINO_2$ chemistry on air quality not only depends on the 452 amount of chlorine emissions, but is also sensitive to the parameterizations for γ_{N205} and φ_{CIN02} . As 453 discussed earlier (Fig. 3a), there exists a large difference in simulated N2O5 between the Base and NoEm 454 cases at the Wangdu site, implying the sensitivity of γ_{N205} to chlorine emissions in the Yu 455 parameterization and thus the importance of non-sea salt chlorine emissions in inland China. The 456 comparison between the Base and NoHet cases (not shown here) also suggests that the heterogeneous 457 uptake of N2O5 on chloride-containing aerosol surfaces in the Yu Parameterization is an important loss 458 pathway of N₂O₅, and should not be ignored.

In contrast, N2O5 concentrations have little dependence on chlorine emissions in the McDuffie 459 460 parameterization (Fig. 3a). This insensitivity to chlorine emissions could be expected from Eq. 1 where y_{N205} relies mainly on total concentrations of inorganic species, of which chlorine is only a minor 461 462 component. The smaller dependence of γ_{N205} on concentrations of Cl⁻ together with the lower value of 463 φ_{CINO2} make the results from the McDuffie case less sensitive to chlorine emissions, producing less 464 CINO2 and Cl atoms compared with the Base case (Yu parameterization) although with the same emission. Consequently the McDuffie case produces less O3, with annual mean surface concentrations of MDA8 465 O3 lower by 0.47 ppbv averaged in China (by up to 2 ppbv in the SCB), but results in more PM2.5 (0.63 466 467 μ g m⁻³ averaged in China and up to 4.7 μ g m⁻³ in the SCB on annual mean basis) mainly due to NO₃⁻ (Fig.

8). In other words, compared to the Base case with the Yu parameterization, the impacts of chlorine
emissions on annual MDA8 O₃ and PM_{2.5} in the McDuffie case has been decreased by 48% and 27%
averaged in China, respectively. Therefore, even with the same amounts of emissions, the impacts of
N₂O₅ - ClNO₂ chemistry on air quality varies significantly with different parameterizations.

472 4 Conclusions

473 Considering the importance of chlorine chemistry in modulating the O₃ and PM_{2.5} as well as the previously ignored chlorine emission from anthropogenic and biomass burning, we updated the GOES-474 475 Chem model in this study with comprehensive chlorine emissions and a new parameterization based on 476 the study of Yu et al. (2020) for $N_2O_5 - CINO_2$ chemistry, followed by the extensive evaluation of model 477 performance. Through the utilization of a large number of observational datasets, we found a substantial 478 improvement has been achieved by the additional chlorine emissions, with NMB decreasing from -96% 479 -79% to -36% - 39% for Cl⁻ simulation. The comparison with observed N₂O₅ and ClNO₂ also indicates 480 better model performance with Yu parameterization while $\gamma_{\rm N205}$ and $\varphi_{\rm CIN02}$ are underestimated in 481 McDuffie parameterization (a default setting in GEOS-Chem), resulting in larger model bias. The 482 simulation of O3 and PM2.5 also agrees better with observations in general in the Base case (with the 483 additional chlorine emissions and Yu parameterization) than the others.

Total tropospheric chlorine chemistry could increase Cl atoms by up to 7×10^3 molec cm⁻³, and leads to 484 an increase of up to 4.5 ppbv in MDA8 O_3 but a decrease of up to 7.9 μ g m⁻³ in PM_{2.5} concentrations on 485 486 an annual mean basis in China. The decrease in PM2.5 is mainly associated with the decrease in NO3- and 487 NH_4^+ , by up to 6.4 and 1.9 μ g m⁻³, respectively. The results also indicate that the $N_2O_5 - CINO_2$ chemistry dominate the impact of chlorine chemistry, accounting for 83% and 90% of total change in O₃ and PM_{2.5} 488 489 concentrations. In other words, the chlorine chemistry without the N₂O₅ - ClNO₂ chemistry has a minor 490 effect on annual mean MDA8 O₃ (less than 0.7 ppbv) and PM_{2.5} (less than 1.5 µg m⁻³) concentrations in 491 China. This mechanism is particularly useful in elucidating the commonly seen O₃ underestimations (e.g. 492 Ma et al. (2019)).

493 The effect of N_2O_5 – ClNO₂ chemistry is sensitive to chlorine emissions. With the additional

494	anthropogenic and biomass burning sources, simulated $PM_{2.5}$ concentrations are increased by up to 4.5
495	$\mu g~m^{\text{-}3}$ in the NCP but decreased by up to 3.7 $\mu g~m^{\text{-}3}$ in the SCB on an annual basis. The latter is mainly
496	driven by the decrease of $\mathrm{NO}_3{}^{\scriptscriptstyle -}$ due to the competition between the formation of ClNO_2 and HNO_3 upon
497	the uptake of $N_2 O_5 \text{on}$ aerosol surfaces. The additional emissions also increase Cl atoms and OH in China
498	associated with the photolysis of ClNO ₂ , consequently leading to an increase of annual mean MDA8 O_3
499	concentrations by up to 3.5 ppbv. In contrast, the significance of the $N_2O_5-ClNO_2$ chemistry especially
500	over inland China would be severely underestimated if only sea salt chlorine is considered, with only a
501	slight increase in MDA8 O3 (< 0.5 ppbv) and a minor decrease in $PM_{2.5}$ (< 1.5 $\mu g~m^{\text{-}3})$ in inland China.
502	Moreover, we found the importance of chlorine chemistry not only depends on the amount of emissions,
503	but is also sensitive to the parameterizations for N_2O_5 – $ClNO_2$ chemistry. Although with the same
504	emission, the effects on MDA8 O_3 and $\mathrm{PM}_{2.5}$ in China from the McDuffie case are lower compared to
505	the results with the Yu parameterization: differing by 48% and 27% in the annual average, respectively.

506 Acknowledgements

- 507 This study is supported by the National key R&D Program of China (2018YFC0213901), the National
- 508 Natural Science Foundation of China (41907182, 41877303, 91644218, 41877302, 41875156), the
- 509 Fundamental Research Funds for the Central Universities (21621105), Guangdong Natural Science
- 510 Funds for Distinguished Young Scholar (grant No. 2018B030306037), the Guangdong Innovative and
- 511 Entrepreneurial Research Team Program (Research team on atmospheric environmental roles and
- 512 effects of carbonaceous species: 2016ZT06N263), and Special Fund Project for Science and
- 513 Technology Innovation Strategy of Guangdong Province (2019B121205004).

514 Competing interests.

515 The authors declare that they have no conflict of interest.

516 Data availability

517 The data used in this study are available upon request from Qiaoqiao Wang (<u>qwang@jnu.edu.cn</u>).

518 References

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E.,
 Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for
 atmospheric chemistry: Volume II gas phase reactions of organic species, Atmos. Chem. Phys., 6,
 3625-4055, 10.5194/acp-6-3625-2006, 2006.
- Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N2O5 reactivity on aqueous
 particles: the competing effects of particle liquid water, nitrate and chloride, Atmospheric Chemistry
 & Physics Discussions, 9, 191-198, 2009.
- 526 Chang, W. L., Brown, S. S., Stutz, J., Middlebrook, A. M., Bahreini, R., Wagner, N. L., Dubé, W. P.,
 527 Pollack, I. B., Ryerson, T. B., and Riemer, N.: Evaluating N2O5 heterogeneous hydrolysis
 528 parameterizations for CalNex 2010, J. Geophys. Res.: Atmos., 121, 5051-5070,
 529 https://doi.org/10.1002/2015JD024737, 2016.
- Chen, C., Zhang, H., Yan, W., Wu, N., Zhang, Q., and He, K.: Aerosol water content enhancement leads 530 531 to changes in the major formation mechanisms of nitrate and secondary organic aerosols in winter 532 over the North China Plain, Environ. Pollut., 287, 117625, 533 https://doi.org/10.1016/j.envpol.2021.117625, 2021a.
- Chen, W., Ye, Y., Hu, W., Zhou, H., Pan, T., Wang, Y., Song, W., Song, Q., Ye, C., Wang, C., Wang, B.,
 Huang, S., Yuan, B., Zhu, M., Lian, X., Zhang, G., Bi, X., Jiang, F., Liu, J., Canonaco, F., Prevot,
 A. S. H., Shao, M., and Wang, X.: Real-Time Characterization of Aerosol Compositions, Sources,
 and Aging Processes in Guangzhou During PRIDE-GBA 2018 Campaign, J. Geophys. Res.: Atmos.,
 126, e2021JD035114, https://doi.org/10.1029/2021JD035114, 2021b.
- 539 Choi, M. S., Qiu, X., Zhang, J., Wang, S., Li, X., Sun, Y., Chen, J., and Ying, Q.: Study of Secondary
 540 Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic
 541 Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model, Environ. Sci.
 542 Technol., 54, 13409-13418, 10.1021/acs.est.0c02958, 2020.
- 543 Dai, J., Liu, Y., Wang, P., Fu, X., Xia, M., and Wang, T.: The impact of sea-salt chloride on ozone through
 544 heterogeneous reaction with N2O5 in a coastal region of south China, Atmos. Environ., 236, 117604,
 545 https://doi.org/10.1016/j.atmosenv.2020.117604, 2020.
- 546 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer,

547 548 549	K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer, Anal. Chem., 78, 8281-8289, 10.1021/ac061249n, 2006.
550	Finlayson-Pitts, B. J., Ezell, M. J., and Pitts, J. N. J.: Formation of chemically active chlorine compounds
551	by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2, Cheminform, 20, 241-
552	244, 1989.
553 554 555	Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K ⁺ –Ca ²⁺ –Mg ²⁺ –NH ₄ ⁺ –Na ⁺ –SO ₄ ²⁻ –NO ₃ ⁻ –Cl ⁻ –H ₂ O aerosols, Atmos. Chem. Phys., 7, 4639-4659, 10.5194/acp-7-4639-2007, 2007.
556	Fu, X., Wang, T., Wang, S., Zhang, L., Cai, S., Xing, J., and Hao, J.: Anthropogenic Emissions of
557	Hydrogen Chloride and Fine Particulate Chloride in China, Environ. Sci. Technol., 52, 1644, 2018.
558	Geng, G., Zhang, Q., Martin, R. V., Van Donkelaar, A., Huo, H., Che, H., Lin, J., and He, K.: Estimating
559	long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical
560	transport model, Remote Sens. Environ., 166, 262-270, 2015.
561 562 563	Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210, 10.5194/acp-6-3181-2006, 2006.
564 565 566 567 568	 Haskins, J. D., Lee, B. H., Lopez-Hilifiker, F. D., Peng, Q., Jaeglé, L., Reeves, J. M., Schroder, J. C., Campuzano-Jost, P., Fibiger, D., McDuffie, E. E., Jiménez, J. L., Brown, S. S., and Thornton, J. A.: Observational Constraints on the Formation of Cl2 From the Reactive Uptake of ClNO2 on Aerosols in the Polluted Marine Boundary Layer, J. Geophys. Res.: Atmos., 124, 8851-8869, https://doi.org/10.1029/2019JD030627, 2019.
569	Hong, Y., Liu, Y., Chen, X., Fan, Q., Chen, C., Chen, X., and Wang, M.: The role of anthropogenic
570	chlorine emission in surface ozone formation during different seasons over eastern China, Sci. Total
571	Environ., 723, 137697, https://doi.org/10.1016/j.scitotenv.2020.137697, 2020.
572	Hossaini, R., Chipperfield, M. P., Saiz-Lopez, A., Fernandez, R., Monks, S., Feng, W., Brauer, P., and
573	von Glasow, R.: A global model of tropospheric chlorine chemistry: Organic versus inorganic
574	sources and impact on methane oxidation, J. Geophys. Res.: Atmos., 121, 14,271-214,297,
575	https://doi.org/10.1002/2016JD025756, 2016.
576	Huang, Z., Zhong, Z., Sha, Q., Xu, Y., Zhang, Z., Wu, L., Wang, Y., Zhang, L., Cui, X., Tang, M., Shi,
577	B., Zheng, C., Li, Z., Hu, M., Bi, L., Zheng, J., and Yan, M.: An updated model-ready emission
578	inventory for Guangdong Province by incorporating big data and mapping onto multiple chemical
579	mechanisms, Sci. Total Environ., 769, 144535, https://doi.org/10.1016/j.scitotenv.2020.144535,
580	2021.

581	Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J. T.: Global distribution of sea salt aerosols:
582	new constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 11, 3137-3157,
583	10.5194/acp-11-3137-2011, 2011.
584	Kercher, J. P., Riedel, T. P., and Thornton, J. A.: Chlorine activation by N2O5: simultaneous, in situ
585	detection of CINO2 and N2O5 by chemical ionization mass spectrometry, Atmospheric
586	Measurement Techniques Discussions, 2009.
587 588	Lawler, M. J., Sander, R., Carpenter, L. J., Lee, J. D., and Saltzman, E. S.: HOCl and Cl2 observations in marine air, Atmos. Chem. Phys., 11, 8115-8144, 10.5194/acp-11-7617-2011, 2011.
589	Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang,
590	Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J.,
591	Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semi-
592	rural site in Beijing: Significant chlorine liberation from CINO2 and subsequent gas and particle
593	phase Cl-VOC production, Atmos. Chem. Phys., 18, 13013-13030, 10.5194/acp-18-13013-2018,
594	2018.
595 596 597 598 599 600	 Lee, B. H., Lopez-Hilfiker, F. D., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., McDuffie, E. E., Fibiger, D. L., Veres, P. R., Brown, S. S., Campos, T. L., Weinheimer, A. J., Flocke, F. F., Norris, G., O'Mara, K., Green, J. R., Fiddler, M. N., Bililign, S., Shah, V., Jaeglé, L., and Thornton, J. A.: Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coal-Fired Power Plants, J. Geophys. Res.: Atmos., 123, 11,225-211,237, https://doi.org/10.1029/2018JD029284, 2018.
601	Li, G., Su, H., Ma, N., Tao, J., Kuang, Y., Wang, Q., Hong, J., Zhang, Y., Kuhn, U., Zhang, S., Pan, X.,
602	Lu, N., Tang, M., Zheng, G., Wang, Z., Gao, Y., Cheng, P., Xu, W., Zhou, G., Zhao, C., Yuan, B.,
603	Shao, M., Ding, A., Zhang, Q., Fu, P., Sun, Y., Pöschl, U., and Cheng, Y.: Multiphase chemistry
604	experiment in Fogs and Aerosols in the North China Plain (McFAN): integrated analysis and
605	intensive winter campaign 2018, Faraday Discuss., 226, 207-222, 10.1039/D0FD00099J, 2021.
606	Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017
607	trends in summer surface ozone in China, P. Natl. Acad. Sci., 116, 422-427,
608	10.1073/pnas.1812168116, 2019.
609 610 611 612 613 614	 Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935-963, 10.5194/acp-17-935-2017, 2017. Li, Q., Zhang, L., Wang, T., Tham, Y. J., Ahmadov, R., Xue, L., Zhang, Q., and Zheng, J.: Impacts of
615	heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive

616 nitrogen partitioning: improvement and application of the WRF-Chem model in southern China,

617	Atmos. Chem. Phys., 16, 14875-14890, 10.5194/acp-16-14875-2016, 2016.
618	Liu, X., Qu, H., Huey, L. G., Wang, Y., Sjostedt, S., Zeng, L., Lu, K., Wu, Y., Hu, M., Shao, M., Zhu, T.,
619	and Zhang, Y.: High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on
620	the North China Plain, Environ. Sci. Technol., 51, 9588-9595, 10.1021/acs.est.7b03039, 2017.
621	Liu, Y., Fan, Q., Chen, X., Zhao, J., Ling, Z., Hong, Y., Li, W., Chen, X., Wang, M., and Wei, X.:
622	Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration
623	on tropospheric ozone formation in China, Atmos. Chem. Phys., 18, 2709-2724, 10.5194/acp-18-
624	2709-2018, 2018.
625	Lobert, J. M., Keene, W. C., Logan, J. A., and Yevich, R.: Global chlorine emissions from biomass
626	burning: Reactive Chlorine Emissions Inventory, J. Geophys. Res.: Atmos., 104, 8373-8389,
627	https://doi.org/10.1029/1998JD100077, 1999.
628	Ma, M., Gao, Y., Wang, Y., Zhang, S., Leung, L. R., Liu, C., Wang, S., Zhao, B., Chang, X., Su, H.,
629	Zhang, T., Sheng, L., Yao, X., and Gao, H.: Substantial ozone enhancement over the North China
630	Plain from increased biogenic emissions due to heat waves and land cover in summer 2017, Atmos.
631	Chem. Phys., 19, 12195-12207, 10.5194/acp-19-12195-2019, 2019.
632 633 634 635 636 637 638	 McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez Hilfiker, F., Lee, B. H., Jaeglé, L., Guo, H., Weber, R. J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Campos, T., Hall, S. R., Ullmann, K., Roberts, J. M., Thornton, J. A., and Brown, S. S.: CINO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization, J. Geophys. Res.: Atmos., 123, 12,994-913,015, https://doi.org/10.1029/2018JD029358, 2018a.
639 640 641 642 643 644 645	 McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., Shah, V., Jaeglé, L., Guo, H., Weber, R. J., Michael Reeves, J., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Hornbrook, R. S., Apel, E. C., Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations, J. Geophys. Res.: Atmos., 123, 4345-4372, https://doi.org/10.1002/2018JD028336, 2018b.
646	Mitroo, D., Gill, T. E., Haas, S., Pratt, K. A., and Gaston, C. J.: CINO2 Production from N2O5 Uptake
647	on Saline Playa Dusts: New Insights into Potential Inland Sources of CINO2, Environ. Sci. Technol.,
648	53, 7442-7452, 2019.
649	Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J.,
650	Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of aerosol
651	chemical composition on N ₂ O ₅ uptake: airborne regional measurements in northwestern Europe,
652	Atmos. Chem. Phys., 15, 973-990, 10.5194/acp-15-973-2015, 2015.

653 654 655 656	Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne, J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol, Aerosol Sci. Technol., 45, 780-794, 10.1080/02786826.2011.560211, 2011.
657 658	Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb, J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher,
659 660	J., Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the polluted subtropical marine boundary layer, Nat. Geosci., 1, 324-328, 10.1038/ngeo177, 2008.
661	Riedel, T. P., Bertram, T. H., Crisp, T. A., Williams, E. J., Lerner, B. M., Vlasenko, A., Li, S. M., Gilman,
662 663	J., De Gouw, J., and Bon, D. M.: Nitryl Chloride and Molecular Chlorine in the Coastal Marine Boundary Layer, Environ. Sci. Technol., 46, 10463-10470, 2012.
664 665	Sarwar, G., Simon, H., Xing, J., and Mathur, R.: Importance of tropospheric ClNO2 chemistry across the Northern Hemisphere, Geophys. Res. Lett., 2014.
666	Schmidt, J. A., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., Evans, M. J., Liang, Q., Suleiman, R.
667	M., Oram, D. E., Le Breton, M., Percival, C. J., Wang, S., Dix, B., and Volkamer, R.: Modeling the
668	observed tropospheric BrO background: Importance of multiphase chemistry and implications for
669 670	ozone, OH, and mercury, J. Geophys. Res.: Atmos., 121, 11,819-811,835, https://doi.org/10.1002/2015JD024229, 2016.
671 672	Sherwen, T., Evans, M. J. J., Sommariva, R., Hollis, L. D. J., Ball, S., Monks, P., Reed, C., Carpenter, L., Lee, J. D., and Forster, G.: Effects of halogens on European air-quality, Faraday Discuss., 200, 2017.
673	Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob, D. J.,
674 675	Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C.,
676	and composition in GEOS Chem. Atmos. Chem. Phys. 16, 12239, 12271, 10, 5194/acn 16, 12239
677	2016, 2016.
678	Simmonds, P. G., Manning, A. J., Cunnold, D. M., McCulloch, A., O'Doherty, S., Derwent, R. G.,
679	Krummel, P. B., Fraser, P. J., Dunse, B., Porter, L. W., Wang, R. H. J., Greally, B. R., Miller, B. R.,
680	Salameh, P., Weiss, R. F., and Prinn, R. G.: Global trends, seasonal cycles, and European emissions
681	of dichloromethane, trichloroethene, and tetrachloroethene from the AGAGE observations at Mace
682 683	Head, Ireland, and Cape Grim, Tasmania, J. Geophys. Res.: Atmos., 111, https://doi.org/10.1029/2006JD007082, 2006.
684	Staudt, S., Gord, J. R., Karimova, N. V., McDuffie, E. E., Brown, S. S., Gerber, R. B., Nathanson, G. M.,
685	and Bertram, T. H.: Sulfate and Carboxylate Suppress the Formation of ClNO2 at Atmospheric
686	Interfaces, ACS Earth and Space Chemistry, 3, 1987-1997, 10.1021/acsearthspacechem.9b00177,
687	2019.

688	Tian, M., Liu, Y., Yang, F., Zhang, L., Peng, C., Chen, Y., Shi, G., Wang, H., Luo, B., Jiang, C., Li, B.,
689	Takeda, N., and Koizumi, K.: Increasing importance of nitrate formation for heavy aerosol pollution
690	in two megacities in Sichuan Basin, southwest China, Environ. Pollut., 250, 898-905,
691	https://doi.org/10.1016/j.envpol.2019.04.098, 2019.
692	Van, d. W., G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C.,
693	Defries, R. S., Jin, Y., and Van Leeuwen, T. T.: Global fire emissions and the contribution of
694	deforestation, savanna, forest, agricultural, and peat fires (1997-2009), Atmos. Chem. Phys., 10,
695	16153-16230, 10.5194/acp-10-11707-2010, 2010.
696	Wang, T., Tham, Y. J., Xue, L., Li, Q., Zha, Q., Wang, Z., Poon, S. C. N., Dubé, W. P., Blake, D. R.,
697	Louie, P. K. K., Luk, C. W. Y., Tsui, W., and Brown, S. S.: Observations of nitryl chloride and
698	modeling its source and effect on ozone in the planetary boundary layer of southern China, J.
699	Geophys. Res.: Atmos., 121, 2476-2489, https://doi.org/10.1002/2015JD024556, 2016.
700	Wang, X., Jacob, D. J., Fu, X., Wang, T., and Liao, H.: Effects of Anthropogenic Chlorine on PM 2.5 and
701	Ozone Air Quality in China, Environ. Sci. Technol., 54, 9908-9916, 2020.
702	Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T.,
703	Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and
704	Liao, H.: The role of chlorine in global tropospheric chemistry, Atmos. Chem. Phys., 19, 3981-4003,
705	10.5194/acp-19-3981-2019, 2019.
706	Wang, Y., Shen, L., Wu, S., Mickley, L., He, J., and Hao, J.: Sensitivity of surface ozone over China to
707	2000–2050 global changes of climate and emissions, Atmos. Environ., 75, 374-382, 2013.
708	Xia, M., Wang, W., Wang, Z., Gao, J., Li, H., Liang, Y., Yu, C., Zhang, Y., Wang, P., Zhang, Y., Bi, F.,
709	Cheng, X., and Wang, T.: Heterogeneous Uptake of N2O5 in Sand Dust and Urban Aerosols
710	Observed during the Dry Season in Beijing, Atmosphere, 10, 204, 2019.
711	Xu, Z., Liu, M., Zhang, M., Song, Y., Wang, S., Zhang, L., Xu, T., Wang, T., Yan, C., Zhou, T., Sun, Y.,
712	Pan, Y., Hu, M., Zheng, M., and Zhu, T.: High efficiency of livestock ammonia emission controls
713	in alleviating particulate nitrate during a severe winter haze episode in northern China, Atmos. Chem.
714	Phys., 19, 5605-5613, 10.5194/acp-19-5605-2019, 2019.
715	Yang, X., Wang, T., Xia, M., Gao, X., Li, Q., Zhang, N., Gao, Y., Lee, S., Wang, X., Xue, L., Yang, L.,
716	and Wang, W.: Abundance and origin of fine particulate chloride in continental China, Sci. Total
717	Environ., 624, 1041-1051, https://doi.org/10.1016/j.scitotenv.2017.12.205, 2018.
718	Ye, C., Yuan, B., Lin, Y., Wang, Z., Hu, W., Li, T., Chen, W., Wu, C., Wang, C., Huang, S., Qi, J., Wang,
719	B., Wang, C., Song, W., Wang, X., Zheng, E., Krechmer, J. E., Ye, P., Zhang, Z., Wang, X., Worsnop,
720	D. R., and Shao, M.: Chemical characterization of oxygenated organic compounds in the gas phase
721	and particle phase using iodide CIMS with FIGAERO in urban air, Atmos. Chem. Phys., 21, 8455-
722	8478, 10.5194/acp-21-8455-2021, 2021.

723	Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W., Tham, Y. J., Chen, T., Zheng, P., Li, H., Shan, Y., Wang, X.,
724	Xue, L., Zhou, Y., Yue, D., Ou, Y., Gao, J., Lu, K., Brown, S. S., Zhang, Y., and Wang, T.:
725	Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: improving model
726	representation of uptake parameters, Atmos. Chem. Phys., 20, 4367-4378, 10.5194/acp-20-4367-
727	2020, 2020.
728	Zhang, T., de Jong, M. C., Wooster, M. J., Xu, W., and Wang, L.: Trends in eastern China agricultural
728 729	Zhang, T., de Jong, M. C., Wooster, M. J., Xu, W., and Wang, L.: Trends in eastern China agricultural fire emissions derived from a combination of geostationary (Himawari) and polar (VIIRS) orbiter
728 729 730	Zhang, T., de Jong, M. C., Wooster, M. J., Xu, W., and Wang, L.: Trends in eastern China agricultural fire emissions derived from a combination of geostationary (Himawari) and polar (VIIRS) orbiter fire radiative power products, Atmos. Chem. Phys., 20, 10687-10705, 10.5194/acp-20-10687-2020,
728 729 730 731	Zhang, T., de Jong, M. C., Wooster, M. J., Xu, W., and Wang, L.: Trends in eastern China agricultural fire emissions derived from a combination of geostationary (Himawari) and polar (VIIRS) orbiter fire radiative power products, Atmos. Chem. Phys., 20, 10687-10705, 10.5194/acp-20-10687-2020, 2020.
728 729 730 731	Zhang, T., de Jong, M. C., Wooster, M. J., Xu, W., and Wang, L.: Trends in eastern China agricultural fire emissions derived from a combination of geostationary (Himawari) and polar (VIIRS) orbiter fire radiative power products, Atmos. Chem. Phys., 20, 10687-10705, 10.5194/acp-20-10687-2020, 2020.

Figure 1. Annual emissions of (a) HCl, (b) Cl₂, (c) non-sea salt Cl⁻.

736

737 Figure 2. Time series of simulated and observed particulate Cl⁻ concentrations at the Guangzhou, Dongying 738 and Gucheng sites.

752 (b) Cl atom, (c) MDA8 O₃ and (d) PM_{2.5} in China, estimated as the differences between the Base and

NoChem cases.

753 754

756 Figure 6. Effects of N2O5-CINO2 chemistry on annual mean surface concentrations of (a) nighttime max

ClNO₂, (b) Cl atom, (c) MDA8 O₃ and (d) PM_{2.5} in China, estimated as the differences between the Base and
 NoHet cases.

- 762
- 763

- Figure 8. Effects of different parameterizations on annual mean surface concentrations of (a) nighttime max CINO₂, (b) Cl atom, (c) MDA8 O₃, (d) PM_{2.5}, and (e) NO₃⁻ in China, estimated as the differences between the Base and McDuffie cases.

776

Table 1. Chlorine emissions in China in the model.

Sources	By default (Gg Cl a ⁻¹)	Updated in this study (Gg Cl a ⁻¹)
Sea salt Cl-	6.5×10^4	6.5×10^4
Anthropogenic HCl	0	218
Biomass burning HCl	0	30
Anthropogenic Cl ₂	0	8.9
Anthropogenic Cl-	0	379
Biomass burning Cl-	0	120
CH ₃ Cl ^a	3.8	3.8
$CH_2Cl_2^a$ CHCl_3 ^a	2.4 0.70	2.4 0.70

^a: Sources are shown in terms of the chemical release (e.g. +Cl, +OH, +hv)

Table 2. Model setup of all simulation cases

Cases	N2O5 uptake	ClNO ₂ production	Other tropospheric	Anthropogenic and biomass burning
	(yn205)	(φ_{CINO2})	chlorine chemistry	inorganic chlorine emissions
Base	Yu et al. (2020)	Yu et al. (2020)	Full	Yes
McDuffie	McDuffie et al.	McDuffie et al.	Full	Yes
	(2018a, 2018b)	(2018a, 2018b)		
NoEm	Yu et al. (2020)	Yu et al. (2020)	Full	None
NoHet	Yu et al. (2020) but with $[Cl^-] = 0$	None	Full	Yes
NoChem	Yu et al. (2020) but with $[Cl^-] = 0$	None	None	Yes
NoEmHet	Yu et al. (2020) but with $[Cl^-] = 0$	None	Full	None
NoAll	Yu et al. (2020) but with $[Cl^-] = 0$	None	None	None

780

Table 3. Normalized mean bias (NMB) and correlation coefficients (r) between observed and simulated

MDA8 O3 and PM2.5 concentrations during 2018 in China McDuffie NoEm Base Species Time NMB NMB NMB r r r Annual -26% 0.83 -27% 0.83 -28% 0.82 MAM^a 0.87 0.87 0.87 -35% -36% -36% MDA8 O₃ JJA^b -5.5% 0.50 -5.2% 0.48 -5.9% 0.48 0.78 SON^c -24% 0.79 -26% -28% 0.76 DJF^d 0.8 0.80 -49% 0.81 -53% -54% Annual 0.81 0.81 2.3% 0.80 3.6% 5.6% MAM -6.3% 0.52 -4.9% 0.53 -6.2% 0.52 0.70 0.70 PM_{2.5} JJA 3.9% 0.70 4.6% 5.0% SON 0.79 0.80 0.79 28% 32% 26%

783 ^a: March, April, and May (Spring)

784 ^b: June, July, and August (Summer)

785 ^c: September, October, and November (Autumn)

DJF

-4.3%

786 ^d: December, January, and February (Winter)

787

0.82

-2.6%

0.82

-7.9%

0.82

⁷⁷⁸ 779

⁷⁸¹ 782